Sequential Monte Carlo Point-Process Estimation of Kinematics from Neural Spiking Activity for Brain-Machine Interfaces

نویسندگان

  • Yiwen Wang
  • António R. C. Paiva
  • José Carlos Príncipe
  • Justin C. Sanchez
چکیده

Many decoding algorithms for brain machine interfaces' (BMIs) estimate hand movement from binned spike rates, which do not fully exploit the resolution contained in spike timing and may exclude rich neural dynamics from the modeling. More recently, an adaptive filtering method based on a Bayesian approach to reconstruct the neural state from the observed spike times has been proposed. However, it assumes and propagates a gaussian distributed state posterior density, which in general is too restrictive. We have also proposed a sequential Monte Carlo estimation methodology to reconstruct the kinematic states directly from the multichannel spike trains. This letter presents a systematic testing of this algorithm in a simulated neural spike train decoding experiment and then in BMI data. Compared to a point-process adaptive filtering algorithm with a linear observation model and a gaussian approximation (the counterpart for point processes of the Kalman filter), our sequential Monte Carlo estimation methodology exploits a detailed encoding model (tuning function) derived for each neuron from training data. However, this added complexity is translated into higher performance with real data. To deal with the intrinsic spike randomness in online modeling, several synthetic spike trains are generated from the intensity function estimated from the neurons and utilized as extra model inputs in an attempt to decrease the variance in the kinematic predictions. The performance of the sequential Monte Carlo estimation methodology augmented with this synthetic spike input provides improved reconstruction, which raises interesting questions and helps explain the overall modeling requirements better.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Neural Decoding Using a Parallel Sequential Monte Carlo Method on Point Processes with Ensemble Effect

Sequential Monte Carlo estimation on point processes has been successfully applied to predict the movement from neural activity. However, there exist some issues along with this method such as the simplified tuning model and the high computational complexity, which may degenerate the decoding performance of motor brain machine interfaces. In this paper, we adopt a general tuning model which tak...

متن کامل

Discrete- and Continuous-Time Probabilistic Models and Algorithms for Inferring Neuronal UP and DOWN States

UP and DOWN states, the periodic fluctuations between increased and decreased spiking activity of a neuronal population, are a fundamental feature of cortical circuits. Understanding UP-DOWN state dynamics is important for understanding how these circuits represent and transmit information in the brain. To date, limited work has been done on characterizing the stochastic properties of UP-DOWN s...

متن کامل

Information Theoretical Analysis of Instantaneous Motor Cortical Neuron Encoding for Brain-Machine Interfaces

Sequential estimation algorithms based on spike trains for motor Brain-Machine Interfaces (BMI) require knowledge of both neuronal representation encoding of movement and movement decoding from spike train activity. In these BMIs, an instantaneous encoding estimation is necessary which is unlike the methods commonly used that are based on time windows of neural and kinematic data. An online, in...

متن کامل

Applying Point Estimation and Monte Carlo Simulation Methods in Solving Probabilistic Optimal Power Flow Considering Renewable Energy Uncertainties

The increasing penetration of renewable energy results in changing the traditional power system planning and operation tools. As the generated power by the renewable energy resources are probabilistically changed, the certain power system analysis tolls cannot be applied in this case.  Probabilistic optimal power flow is one of the most useful tools regarding the power system analysis in presen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Neural computation

دوره 21 10  شماره 

صفحات  -

تاریخ انتشار 2009